Name:

Gosford High School

2023

Trial HSC examination

Mathematics Extension 1

General Instructions

• Reading time – 10 minutes

- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/ or calculations

Total Marks 70 Section I – 10 marks • Attempt Questions 1–10 • Allow about 15 minutes for this section Detach the Multiple-choice answer sheet from the last page of this question booklet. Section II – 60 marks

- Attempt Questions 11-14
- Allow about 1 hours and 45 minutes for this section

Section I

(10 marks) Attempt Questions 1 – 10 Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1 Which expression is equal to $\int \sin^2(3x) dx$

A.
$$\frac{1}{2}\left(x - \frac{1}{3}\sin(3x)\right) + C$$

B.
$$\frac{1}{2}\left(x + \frac{1}{3}\sin(3x)\right) + C$$

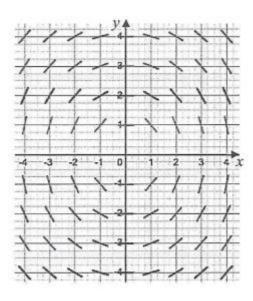
C.
$$\frac{1}{2}\left(x - \frac{1}{6}\sin(6x)\right) + C$$

D.
$$\frac{1}{2}\left(x + \frac{1}{6}\sin(6x)\right) + C$$

2 Which of the following is the solution to $\frac{2}{x-2} < 2$?

- A. x < 2 or x > 3
- B. 2 < x < 3C. -2 < x < 3
- D. -3 < x < 2

3 If
$$\sin x = \frac{3}{5}$$
 and $\frac{\pi}{2} \le x \le \pi$, evaluate $\tan 2x$.
A. $\frac{-7}{24}$
B. $\frac{-24}{7}$
C. $\frac{7}{24}$
D. $\frac{24}{7}$

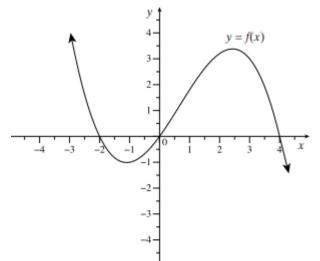


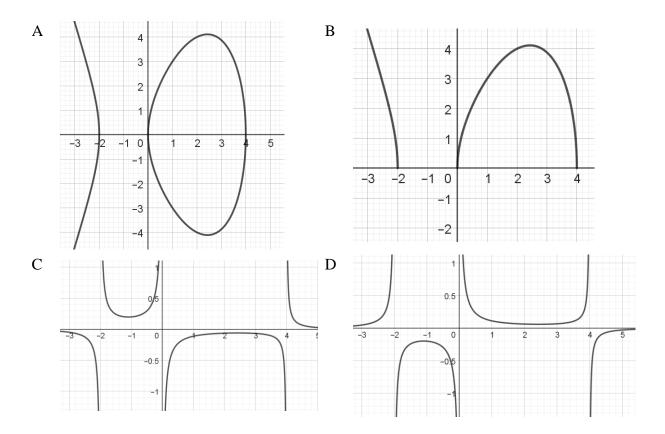
- A. $y = \sin^{-1}(x+1)$ B. $y = \sin^{-1}(x)+1$ C. $y = \cos^{-1}(x+1)$ D. $y = \cos^{-1}(x)+1$
- 5 In how many ways can 5 people be selected from a group of 6 and then arranged in a line so that the two oldest people in the selected group are at either end of the line? (Note, no two people are the same age)
 - A. 720
 - **B.** 144
 - C. 72
 - D. 36
- 6 The temperature T° C of water in a jug is given by $T = 20 + 80e^{-0.2t}$. What is the rate at which the water is cooling when its temperature has fallen to half its initial value?
 - A. 6° C per minute
 - B. 8° C per minute
 - C. 12° C per minute
 - D. 16° C per minute

7 What is the range of the function $f(x) = \tan^{-1}(\sin x)$

A.
$$\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$$

B. $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$
C. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
D. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$


8 Which differential equation is represented by the following slope field?


A.
$$\frac{dy}{dx} = \frac{-x}{y}$$

B. $\frac{dy}{dx} = \frac{-y}{x}$
C. $\frac{dy}{dx} = \frac{x}{y}$
D. $\frac{dy}{dx} = \frac{y}{x}$

dx x

9 The graph of y = f(x) is shown below.

The graph of $y = \frac{1}{f(x)}$ is best represented by:

10 Which of the following is equal to $\cos 3\alpha \sin 2\alpha$?

A.
$$\frac{1}{2}(\sin 5\alpha + \sin \alpha)$$

B. $\frac{1}{2}(\sin 5\alpha - \sin \alpha)$
C. $\frac{1}{2}\left(\sin \frac{5\alpha}{2} + \sin \frac{\alpha}{2}\right)$
D. $\frac{1}{2}\left(\sin \frac{5\alpha}{2} - \sin \frac{\alpha}{2}\right)$

End of Section I

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section.

Answer each question in a separate booklet.

Question 11 (15 marks) Start a new booklet.

a) The polynomial
$$P(x) = 2x^3 - 8x^2 + 7x - 14$$
 has roots α , $-\alpha$ and β .

What is the value of β ?

b) Use the
$$t = \tan \frac{x}{2}$$
 results to show that $\cot x + \tan \frac{x}{2} = \operatorname{cosec} x$ 2

c)
$$\int \frac{2}{x^2 + 4} dx$$
 2

d) Find the constant term in the expansion
$$\left(2x + \frac{3}{x^3}\right)^8$$
 3

e) *OAB* is a triangle where
$$\overrightarrow{OA} = 2i - kj$$
, $\overrightarrow{OB} = ki + 4j$ and $AB = 5\sqrt{2}$

i) Find \overrightarrow{AB} in terms of k.

ii) Find any values of
$$k$$
. 3

f)
Show that the derivative of
$$\frac{\cos^{-1}(2x)}{x}$$
 is equal to $\frac{-\left[2x + \cos^{-1}(2x)\sqrt{1-4x^2}\right]}{x^2\sqrt{1-4x^2}}$ 3

Question 12 (15 marks) Start a new booklet.

a) Evaluate
$$\int_0^1 x^2 \sqrt{1+3x^3} dx$$
 using the substitution $u = 1+3x^3$ 3

b) Given
$$\alpha$$
, β , γ are the roots of the equation $x^3 - 3x^2 - x + 3 = 0$, evaluate $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.

i) Express
$$\sqrt{3}\cos\theta - \sin\theta$$
 in the form $R\cos(\theta + \alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$.


ii) Hence, or otherwise, solve
$$\sqrt{3}\cos\theta - \sin\theta = 1$$
 for $0 \le \theta \le 2\pi$ 2

d) If
$$a = -6i-2j$$
 and $b = i+2j$

i) Show that
$$a \circ b = -10$$

- ii) Hence find the vector projection of a onto b 1
- e) Use mathematical Induction to prove that $11^{2n} + 11^n + 8$ is a multiple of 10 for $n \ge 1$. 3

Question 13 (15 marks) Start a new page.

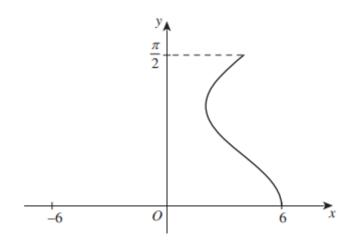
A square *ABCD* of side length 1 unit is "gradually" pushed over to become a rhombus. The angle at $A \theta$ decreases at a constant rate of 0.1 radian per second?

- i) At what rate is the area of the rhombus *ABCD* decreasing when $\theta = \frac{\pi}{6}$?
- ii) At what rate is the shorter diagonal of the rhombus *ABCD* decreasing when 3 $\theta = \frac{\pi}{3}$?

b) Show that the solution to the differential equation $\frac{dy}{dx} = 1 + \frac{2y}{3}$, given y = -1 when x = 2can be written in the form $y = \frac{e^{\frac{2(x-2)}{3}} - 3}{2}$.

c) A rabbit population grows according to the logistic equation $\frac{dP}{dt} = 0.2P \left(1 - \frac{P}{10000}\right)$, where *P* is the number of rabbits after *t* months. The initial population is 1000.

i) Show that
$$\frac{10000}{P(10000-P)} = \frac{1}{P} + \frac{1}{10000-P}$$
.


ii) Find the population of rabbits after seven months. 4

Question 14 (15 marks) Start a new booklet

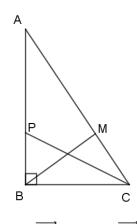
a) The diagram shows the region bounded by the y-axis and $x = 4\cos(3y) + 2$, where

$$0 \le y \le \frac{\pi}{2} \,.$$

The region is rotated about the y-axis to form a solid.

Find the exact volume, V, of the solid formed.

b) A particle, A, is projected from the origin with an initial velocity of $16i + 30 j \text{ ms}^{-1}$.


At the same time, particle B is projected towards the origin from a point that is 60 m to the right of the origin and 25 m above the origin with an initial velocity of $-8i+20 j \text{ ms}^{-1}$.

Let the acceleration due to gravity be 9.8ms^{-2} .

The position vector of particle A at time t seconds is given by $A(t) = 16t i + (30t - 4.9t^2) j$. (Do NOT prove this.)

- i) Find the position vector of particle B (i.e. B(t)) at time t seconds. 3
- ii) Find the time and point at which the two particles collide. 3

c) In the figure $A\hat{B}C = 90^\circ$, $PA = 2 \times BP$, $AM = 2 \times MC$.

Let $\overrightarrow{BA} = \underset{\sim}{v}$ and $\overrightarrow{BC} = \underset{\sim}{u}$.

i) Express \overrightarrow{BM} and \overrightarrow{CP} in terms of \underbrace{u}_{\sim} and \underbrace{v}_{\sim} .

ii) If
$$BM \perp CP$$
, find $\frac{|BA|}{|BC|}$.

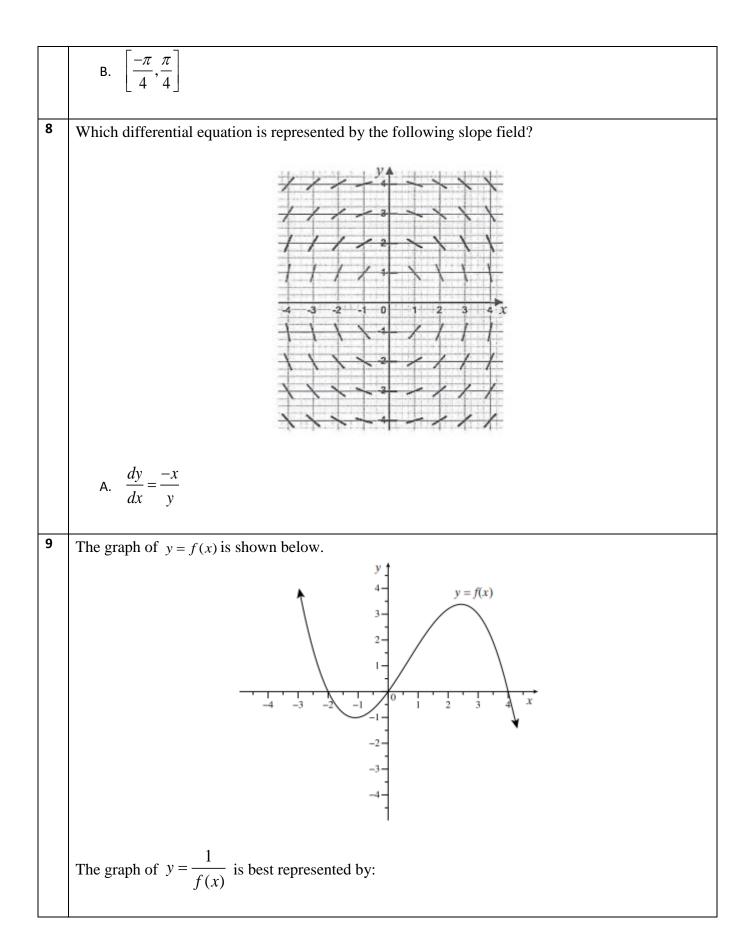
End of the Examination. ©

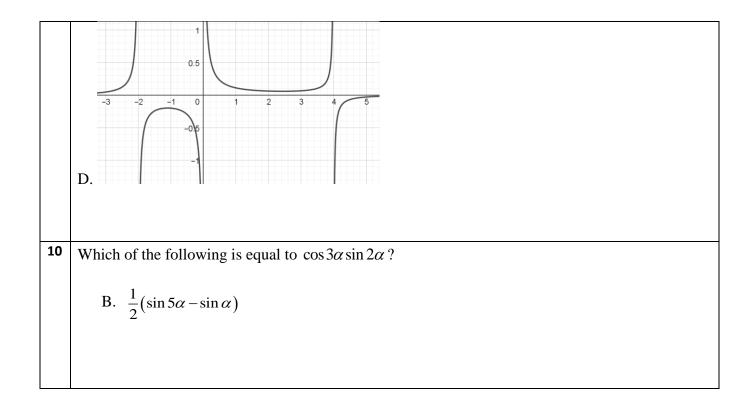
Gosford High School

2023 Trial HSC examination

Mathematics Extension 1

Solutions




2023 Year 12 HSC Advanced Examination

Section 1: Solutions

1.	A i	Bi	с	Di
2.	A	Bi	C į	Di
3.	A į	В	C į	Di
4.	A i	Bi	с	Di
5.	A i	Bi	с	Di
6.	A	Bi	C i	Di
7.	A i	В	C i	Di
8.	A	Bi	C i	Di
9.	A i	Bi	C į	D
10.	A į	В	C į	Di

Sect	ion I
1	Which expression is equal to $\int \sin^2(3x) dx$
	$C. \frac{1}{2} \left(x - \frac{1}{6} \sin\left(6x\right) \right) + C$
2	Which of the following is the solution to $\frac{2}{x-2} < 2$? A. $x < 2$ or $x > 3$
3	3π
	If $\sin x = \frac{3}{5}$ and $\frac{\pi}{2} \le x \le \pi$, evaluate $\tan 2x$.
	B. $\frac{-24}{7}$
4	Which of the following best describes this function?
	C. $y = \cos^{-1}(x+1)$
5	In how many ways can 5 people be selected from a group of 6 and then arranged in a line so that the two oldest people in the selected group are at either end of the line? (Note, no two people are the same age) C. 72
6	The temperature T° C of water in a jug is given by $T = 20 + 80e^{-0.2t}$. What is the rate at which the
	water is cooling when its temperature has fallen to half its initial value?
	A. 6° C per minute
7	What is the range of the function $f(x) = \tan^{-1}(\sin x)$

Mathematics Extension 1

Section II Solutions

Quest	ion 11		
a)	The polynomial $P(x) = 2x^3 - 8x^2 + 7x - 14$ has roots α ,	$-\alpha$ and β	. What is the value of eta ?
	Solution:	Marks	Guideline
	$ \begin{array}{l} \alpha - \alpha + \beta = -\frac{\left(-8\right)}{2} \\ \therefore \beta = 4 \end{array} $	1	For correct answer
	, 2	Marker's	
	$\therefore \beta = 4$	Comment	
			Question done well overall
b)	Use the $t = tan \frac{x}{2}$ results to show that $\cot x + tan \frac{x}{2} = co$	osec x	
	Solution:	Marks	Guideline
	LHS = $\cot x + \tan\left(\frac{x}{2}\right)$	2	Correct solution
	$=\frac{1-t^2}{2t}+t$	1	For correct substitution and making progress towards solution.
	$=\frac{2t}{1-t^2+2t^2}$ $=\frac{1+t^2}{2t}$	Marker's Comment	Students should take care to only work on one side of the equation at a time. Define the LHS and RHS separately and work on them individually.
	$= \operatorname{cosec} x$		
	= RHS		
c)	$\int \frac{2}{x^2 + 4} dx$		
	Solution:	Marks	Guideline
	$\int 2 dx - 2x^{1} \tan^{-1}(x) + a$	2	Correct solution
	$\int \frac{2}{x^2 + 4} dx = 2 \times \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + c$	1	For using inverse tan or getting coefficient of 1.
	$=\tan^{-1}\left(\frac{x}{2}\right)+c$	Marker's Comment	Question overall done well.

d)	Find the constant term in the expansion $\left(2x + \frac{3}{x^3}\right)^8$		
	Solution:	Marks	Guideline
	Term in $x^{k} = {\binom{8}{4}} (2x)^{k} (3x^{-3})^{8-k}$	3	Correct solution
	Term in $x^k = {8 \choose k} (2x)^k (3x^{-3})^{8-k}$		Correct value for <i>k</i> or correct
	$\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ h = h = 8 h = 2h = 24	2	answer from their k.
	$=\binom{8}{k}2^k \times x^k \times 3^{8-k} \times x^{3k-24}$		Correct substitution or showing
		1	some progress.
	$= \binom{8}{k} 2^k \times 3^{8-k} \times x^{4k-24}$	Marker's Comment	Question overall done well.
	For constant term $4k - 24 = 0 \implies k = 6$		
	The constant term is $\begin{pmatrix} 8 \\ 6 \end{pmatrix} \times 2^6 \times 3^{8-6} = 16128$ <i>OAB</i> is a triangle where $\overrightarrow{OA} = 2i - k j$, $\overrightarrow{OB} = k i + 4$		
e)	\overrightarrow{OAB} is a triangle where $\overrightarrow{OA} = 2i - kj$, $\overrightarrow{OB} = ki + 4$	j and $AB = 5$	5√2
i)	Find \overrightarrow{AB} in terms of k.		
	Solution:	Marks	Guideline
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	1	For correct answer
	$=k\underline{i}+4\underline{j}-(2\underline{i}-k\underline{j})$	Marker's	Question done well overall.
	$= \kappa_{\tilde{\iota}} + 4 \tilde{j} - (2 \tilde{\iota} - \kappa_{\tilde{j}})$	Comment	Question done wen overall.
	$= (k-2)\underline{i} + (k+4)\underline{j}$		
ii)	Find any values of k.		
	Solution:	Marks	Guideline
	$(k-2)^2 + (A+k)^2 = 50$		Compact colution
	$ (\kappa - 2) + (4 + \kappa) = 30$	3	Correct solution
	$(k-2)^{2} + (4+k)^{2} = 50$ $k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$		Correctly solves their quadratic
	$\therefore k^2 - 4k + 4 + k^2 + 8k + 16 = 50$	3 2	
			Correctly solves their quadratic
	$\therefore k^2 - 4k + 4 + k^2 + 8k + 16 = 50$	2	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done
	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$	2 1 Marker's Comment	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$	2 1 Marker's Comment	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$	2 1 Marker's Comment	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$	$\begin{array}{c c} 2 \\ \hline 1 \\ \hline Marker's \\ \hline Comment \\ x + \cos^{-1}(2x) \\ \hline x^2 \sqrt{1-4x} \end{array}$	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution:	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ Marks \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution:	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ Marks \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution:	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ Marks \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution:	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ Marks \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into Quotient Rule.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-\left[2\right]}{x}$ Solution: $\frac{d}{dx}\left(\frac{\cos^{-1}(2x)}{x}\right) = \frac{x\left(\frac{-2}{\sqrt{1-4x^{2}}}\right) - \cos^{-1}(2x) \times 1}{x^{2}}$	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ Marks \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ c^2 Guideline Correct solution Correct substitution into Quotient Rule. Evidence of Quotient rule or
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-\left[2\right]}{x}$ Solution: $\frac{d}{dx}\left(\frac{\cos^{-1}(2x)}{x}\right) = \frac{x\left(\frac{-2}{\sqrt{1-4x^{2}}}\right) - \cos^{-1}(2x) \times 1}{x^{2}}$	2 1 Marker's Comment $x + \cos^{-1}(2x)$ $x^2\sqrt{1-4x}$ Marks 3 2	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into Quotient Rule.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-\left[2\right]}{x}$ Solution: $\frac{d}{dx}\left(\frac{\cos^{-1}(2x)}{x}\right) = \frac{x\left(\frac{-2}{\sqrt{1-4x^{2}}}\right) - \cos^{-1}(2x) \times 1}{x^{2}}$	2 1 Marker's Comment $x + \cos^{-1}(2x)$ $x^2\sqrt{1-4x}$ Marks 3 2	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into Quotient Rule. Evidence of Quotient rule or correctly differentiates inverse
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution:	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ \hline X^2 \sqrt{1-4x} \\ \hline 3 \\ 2 \\ 1 \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into Quotient Rule. Evidence of Quotient rule or correctly differentiates inverse cos.
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-2}{x}$ Solution: $\frac{d}{dx} \left(\frac{\cos^{-1}(2x)}{x} \right) = \frac{x \left(\frac{-2}{\sqrt{1 - 4x^{2}}} \right) - \cos^{-1}(2x) \times 1}{x^{2}}$ $= \frac{\frac{-2x}{\sqrt{1 - 4x^{2}}} - \cos^{-1}(2x)}{x^{2}}$	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ \hline X^2 \sqrt{1-4x} \\ \hline Aarks \\ 3 \\ 2 \\ 1 \\ Marker's \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ $\sqrt{1-4x^2}$ Correct solution Correct solution Correct substitution into Quotient Rule. Evidence of Quotient rule or correctly differentiates inverse cos. Quotient rule was applied quite
f)	$\therefore k^{2} - 4k + 4 + k^{2} + 8k + 16 = 50$ $\therefore k^{2} + 2k - 15 = 0$ $\therefore k = 3, -5$ Show that the derivative of $\frac{\cos^{-1}(2x)}{x}$ is equal to $\frac{-\left[2\right]}{x}$ Solution: $\frac{d}{dx}\left(\frac{\cos^{-1}(2x)}{x}\right) = \frac{x\left(\frac{-2}{\sqrt{1-4x^{2}}}\right) - \cos^{-1}(2x) \times 1}{x^{2}}$	$ \begin{array}{c c} 2 \\ 1 \\ Marker's \\ Comment \\ x + \cos^{-1}(2x) \\ x^2 \sqrt{1-4x} \\ \hline X^2 \sqrt{1-4x} \\ \hline Aarks \\ 3 \\ 2 \\ 1 \\ Marker's \\ \end{array} $	Correctly solves their quadratic or gets one of the correct values. Showing some progress. This question was generally done well if part i was correct. $\sqrt{1-4x^2}$ $\sqrt{1-4x^2}$ Guideline Correct solution Correct substitution into Quotient Rule. Evidence of Quotient rule or correctly differentiates inverse cos. Quotient rule was applied quite

Qu	estion 12			
a)		-		
	Evaluate $x^2\sqrt{1+3}$.	$\overline{x^3} dx$ using the substitution $u = 1 + 3x^3$		
	J_0			
	Solution:		Marks	Guideline
	$1 + 2 x^3 \rightarrow du$.2	3	For correct solution
	$u = 1 + 3x^3 \implies \frac{du}{dx} = 9$	x	3	
	1			Correct integral from
	$\therefore \frac{1}{9} du$	$=x^2dx$		substitution or Correct value from
	,		2	their
	At $x = 0, u = 1$		2	substitution/boundar
	x = 1, u = 4			y values.
	● 1	● 4		Or equivalent merit.
	$\int_{0}^{1} x^{2} \sqrt{1+3x^{3}} dx$	$-\frac{1}{\sqrt{u}} du$		Correct boundary
	$\lambda \gamma 1 + 5\lambda \alpha \lambda$	$-\frac{1}{9}$		values for <i>u</i> or correct
	• 0	• 1	1	derivative of
		$\begin{bmatrix} 1 & 2 & \frac{3}{2} \end{bmatrix}$	-	substitution or
		$=\frac{1}{9}\left[\frac{2}{3}u^{3/2}\right]$		equivalent merit.
				Mostly well done.
		$=\frac{2}{27}[8-1]$		Main errors occurred
				when students did
		$=\frac{14}{27}$		not find the bounds
		$-\frac{1}{27}$		for u. Another
			Marker's	concerningly
			Commen	common mistake was
			t	not reading the given
			_	u substitution
				correctly and writing
				$u = 1 + 3x^2$ making
				the derivative $u' = $
				6 <i>x</i> .
b			1 1	1
ñ	Given α , β , γ are the r	roots of the equation $x^3 - 3x^2 - x + 3 = 0$, evaluation	ate $\frac{1}{2} + \frac{1}{2}$	$+\frac{1}{2}$
'		· · · ·	$\alpha^2 \beta^2$	γ^2
	Solution:		Marks	Guideline
	1 1 1	$=\frac{\alpha^2\beta^2+\alpha^2\gamma^2+\beta^2\gamma^2}{\alpha^2\beta^2\gamma^2}$	3	Correct solution
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\alpha^2}$	$=\frac{1}{\alpha^2 \beta^2 \alpha^2}$	3	
				Correct simplification of sum of the square
	$\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2$	$= (\alpha\beta + \alpha\gamma + \beta\gamma)^2 - 2(\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2)$	2	of the roots, plus 1
				correct from 1 Mark
		$= (\alpha\beta + \alpha\gamma + \beta\gamma)^2 - 2(\alpha\beta\gamma(\alpha + \beta + \gamma))$		or equivalent merit.
				Correct value for
		$=(-1)^2-2(-3\times 3)$		either sum of roots
		=19	1	one at a time, two at
	2 02 2	$(-2)^2$	_	a time or three at a
	$\alpha^2 \beta^2 \gamma^2$	$=(-3)^{2}$		time.
		=9		Poorly done by most.
	1 1 1	19	Marker's	Better responses
	$\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$	$=\frac{1}{0}$	Comment	were able to
	$\alpha^{-} \beta^{-} \gamma^{-}$	7		successfully simplify
L	1			

		the fraction and correctly found the values for the sums and products of the roots.

ci)	Express $\sqrt{3}\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$			
	Solution:	Marks	Guideline	
	$\sqrt{3}\cos\theta - \sin\theta = R\cos(\theta + \alpha)$	2	Correct sol	lution
	$= R\sin\alpha\cos\theta - R\cos\alpha\sin\theta$	0 1 Correct value for		lue for either R or $ heta$
	$\therefore R\sin\alpha = \sqrt{3}$	Marker's	Well done	overall.
	$R\cos\alpha = 1$	Comment		
	$\therefore \tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{6}$			
	$R = \sqrt{\left(\sqrt{3}\right)^2 + \left(-1\right)^2} = 2$			
	$\therefore \sqrt{3}\cos\theta - \sin\theta = 2\cos\left(\theta + \frac{\pi}{6}\right)$			
cii)	Hence, or otherwise, solve $\sqrt{3}\cos\theta - \sin\theta = 1$ for	$0 \le \theta \le 2\pi$		
	Solution:		Marks	Guideline
	$2\cos\left(\theta + \frac{\pi}{6}\right) = 1 \qquad 0 \le \theta \le 2\pi$		2	Correct solution
			1	One correct answer or equivalent merit.
	$\therefore \cos\left(\theta + \frac{\pi}{6}\right) = \frac{1}{2} 0 \le \theta + \frac{\pi}{6} \le \frac{13\pi}{6}$	N	/larker's	Mostly well done. Some common errors were
	$\therefore \theta + \frac{\pi}{6} = \frac{\pi}{3}$ or $\frac{5\pi}{3}$	C	omment	only finding one solution.
	$\therefore \theta = \frac{\pi}{3} - \frac{\pi}{6}$ or $\frac{5\pi}{3} - \frac{\pi}{6}$			
	$=\frac{\pi}{6}$ or $\frac{3\pi}{2}$			
d)	If $\underline{a} = -6\underline{i} - 2\underline{j}$, and $\underline{b} = \underline{i} + 2\underline{j}$			
i)	Show that $\underline{a} \cdot \underline{b} = -10$			
	Solution: (x_1, y_2, y_3)	Marks	Guideline	
	$\begin{array}{l} \underline{a} \cdot \underline{b} &= -6 \times 1 + -2 \times 2 \\ &= -10 \end{array}$	1	For correct	t answer
	- 10	Marker's Comment	Very well c	lone.
ii)	Hence find the vector projection of $\frac{a}{2}$ onto $\frac{b}{2}$	<u> </u>	l	
	Solution:	Marks	Guideline	2
	$proj_{\underline{b}} a = \frac{\underline{a} \cdot \underline{b}}{\underline{b} \cdot \underline{b}} b$	1	Correct se	
				sults. This is an area the
		Marker's cohort needs to revise a		eds to revise as many did
	$=\frac{-10}{1+5}\left(\underline{i}+2\underline{j}\right)$	Comment		mber the projection

e)	Use mathematical Induction to prove that $11^{2n} + 11^n + 8$ is a multiple of 10 for $n \ge 1$.				
	Solution:	Marks	Guideline		
	Let $S\left(n ight)$ be the statement that 11^{2n} + 11^{n} + 8 is divisible by 10	3	Correct solution.		
	For $n = 1$ $11^2 + 11^1 + 8 = 140$ which is divisible by 10 Hence $S(1)$ is true	2	True for n=1 and step 2 or true n=1 and some progress towards step 3.		
		1	True for n=1 or step 2.		
	Suppose there is a k such that $S(k)$ is true. i.e. $11^{2k} + 11^k + 8 = 10M$ for some $M \in \mathbb{Z}^+$ RTP that $11^{2(k+1)} + 11^{k+1} + 8$ is divisible by 10 Now $11^{2(k+1)} + 11^{k+1} + 8 = 11^{2k} \times 11^2 + 11^k \times 11 + 8$ $= 121 \times 11^{2k} + 11 \times 11^k + 8 + 80 - 80$ $= 110 \times 11^{2k} - 80 + 11(11^{2k} + 11^k + 8)$ $10(11 + 12^k - 8) = 11 \times 104$	Marker's Comment	Mostly well done. Common errors were not defining the pronumeral "M" or incorrectly substituting/simplifying in step 3. Another common error was not fully using k+1 in step 3. This highlights that students with incorrect responses need to revise their algebra skills.		
	$= 10(11 \times 11^{2k} - 8) + 11 \times 10M$ $= 10(11 \times 11^{2k} - 8 + 11M)$ $= 10N \text{ for some } N \in \mathbb{Z}^+$ Since $S(n)$ is true for $n = 1$, k and $k + 1$ then by the principle of mathematical induction it is true $\forall n \ge 1$.				

Questio	n 13		
a)	A B C D of side length 1 unit is "gradually" pus A, θ decreases at a constant rate of 0.1 radian per sec		c become a rhombus. The angle at
i)	At what rate is the area of the rhombus $ABCD$ decreases	sing when θ =	$=\frac{\pi}{6}$?
	Solution: Area = $\frac{1}{2}AD \times AB\sin\theta + \frac{1}{2}CD \times CB\sin\theta$ = $\sin\theta$	Marks 3	Guideline For correct answer Finds area of rhombus, differentiates correctly and
	$\therefore \frac{dArea}{d\theta} = \cos \theta$ $\frac{dArea}{dt} = \frac{dArea}{d\theta} \times \frac{d\theta}{dt}$	2	substitutes into function of a function rule. Or equivalent merit. Uses area of a triangle formula or
	$= \cos \theta \times 0.1$ When $\theta = \frac{\pi}{6}$, $\frac{dArea}{dt} = \frac{\sqrt{3}}{20} \text{ cm}^2 \text{ s}^{-1}$	1 Marker's	states function of a function rule or equivalent merit.
ii)	At what rate is the shorter diagonal of the rhombus AB	Comment CD decreasi	ng when $\theta = \frac{\pi}{2}$?
	Solution: From the diagram the shorter diagonal is BD Let $x = \overline{BD}$	Marks 3	Guideline Correct solution
	$\therefore x = \sqrt{1^2 + 1^2 - 2 \times 1 \times 1 \times \cos \theta}$ $= \sqrt{2 - 2 \cos \theta}$	2	Correct solution for their shorter diagonal or correct shorter diagonal and its derivative or equivalent merit.
	$=\sqrt{2-2\left(1-2\sin^2\left(\frac{\theta}{2}\right)\right)}$	1 Marker's	Correct expression for shorter diagonal.
	$=2\sin\left(\frac{\theta}{2}\right)$	Comment	
	$\frac{dx}{dt} = \frac{dx}{d\theta} \times \frac{d\theta}{dt}$ $= 2 \times \frac{1}{2} \cos\left(\frac{\theta}{2}\right) \times 0.1$		
	When $\theta = \frac{\pi}{3}$, $\frac{dx}{dt} = \frac{\sqrt{3}}{20} \text{ cms}^{-1}$		

b)	Show that the solution to the differential equation $\frac{dy}{dx}$ =	$=1+\frac{2y}{3}$, give	n $y = -1$ when $x = 2$ can be
	written in the form $y = \frac{e^{\frac{2(x-2)}{3}} - 3}{2}$.		
	Solution:	Marks	Guideline
	$\frac{dy}{dx} = 1 + \frac{2y}{3}$	4	Correct solution
	$\begin{array}{c} dx & 5 \\ = \frac{3+2y}{3} \end{array}$	3	Correct indefinite integral and value of <i>c</i> or equivalent merit.
	5	2	Correct indefinite integral or equivalent merit.
	$\frac{dx}{dy} = \frac{3}{3+2y}$ $= \frac{3}{2} \times \frac{2}{3+2y}$	1	Re-arranges equation into a usable form or calculates their value of <i>c</i> or equivalent merit.
	2 3+2y $\therefore x = \frac{3}{2} \ln 3+2y + c$	Marker's Comment	
	At $x = 2$, $y = -1 \Rightarrow 2 = \frac{3}{2} \ln 1 + c \Rightarrow c = 2$		
	$\therefore x = \frac{3}{2} \ln \left 3 + 2y \right + 2$		
	$\therefore \ln 3+2y = \frac{2(x-2)}{3}$		
	$\therefore 3+2y = e^{2(x-2)/3}$		
	$\therefore y = \frac{\frac{2(x-2)}{3} - 3}{2}$		

c)	dP	(P
	A rabbit population grows according to the logistic equation $\frac{dP}{dt}$	$ = 0.2P \Big(1 - 1 \Big) $	$\frac{1}{10000}$, where P is the
	number of rabbits after t months. The initial population is 1000		
i)	Show that $\frac{10000}{P(10000-P)} = \frac{1}{P} + \frac{1}{10000-P}$		
	P(1000 - P) = P + 10000 - P		
	Solution:	Marks	Guideline
	RHS $=\frac{1}{P} + \frac{1}{10000 - P}$	1	Correct solution
		Marker's	
	$=\frac{10000 - P + P}{P(10000 - P)}$	Comment	
	$=\frac{10000}{P(10000-P)}$		
ii)	= LHS Find the population of rabbits after seven months.		
	Solution:	Marks	Guideline
	$\frac{dP}{dt} = 0.2P \left(1 - \frac{P}{10000} \right)$	4	For correct answer
			Uses value of <i>t</i> to find
	$5\frac{dP}{dt} = P\left(\frac{10000 - P}{10000}\right)$	3	correct exponential
			equation or equivalent merit.
	$\frac{1}{5}\frac{dt}{dP} = \frac{10000}{P(10000 - P)}$		Correct indefinite integral
	5 dP P(10000 - P)	2	and value of <i>c</i> or
	$=\frac{1}{P}+\frac{1}{10000-P}$		equivalent merit. Re-arranges equation into
		1	a usable form or calculates
	$\therefore \frac{1}{5}t = \ln P - \ln 10000 - P + c$	_	their value of <i>c</i> or equivalent merit.
	At $t = 0$, $P = 1000 \implies 0 = \ln 1000 - \ln 9000 + c \implies c = \ln 9$	Marker's	
	$t = \ln B + \ln(10000 - B) + \ln 0$	Comment	
	$\therefore \frac{t}{5} = \ln P - \ln(10000 - P) + \ln 9$		
	$=\ln\left(\frac{9P}{10000-P}\right)$		
	At $t = 7$, $\frac{7}{5} = \ln\left(\frac{9P}{10000 - P}\right)$		
	$\therefore \frac{9P}{10000 - P} = e^{\frac{7}{5}}$		
	$\therefore 9P + Pe^{\frac{7}{5}} = 10000e^{\frac{7}{5}}$		
	$\therefore P = \frac{10000e^{7/5}}{9 + e^{7/5}}$		
	≈ 3106.19 The population after seven months is 3106 .		
L	The population after seven months is 5100.		

Quest	ion 14						
a)	The diagram shows the region bounded by the y-axis and $x = 4$	$\cos(3y)+2$, where $0 \le y \le \frac{\pi}{2}$.				
	The region is rotated about the y-axis to form a solid.						
	γ π						
	2						
		5 x					
	Find the exact volume, V , of the solid formed.						
	Solution:	Marks	Guideline				
	$r^{\pi/2}$	3	For correct answer				
	$V = \pi \int_{-\infty}^{\pi/2} x^2 dy$		Correct integral or correct				
		2	solution from their integral				
	$\Gamma^{\pi/2}$		involving a cos ² term. Or equivalent merit.				
	$=\pi \int_{0}^{\pi/2} (16\cos^2(3y) + 16\cos(3y) + 4) dy$		Correct expression for x^2 or				
	$= \pi \int_{0}^{\pi/2} (8 + 8\cos(6y) + 16\cos(3y) + 4) dy$		correct substitution for				
		1	their cos ² expression or				
	$=\pi \qquad (8+8\cos(6y)+16\cos(3y)+4)dy$		correct solution for their integral or equivalent				
	$J_{0} = \pi \left[12y + \frac{8}{6}\sin(6y) + \frac{16}{3}\sin(3y) \right]_{0}^{\pi/2}$		merit.				
			Generally well done. Some				
	$=\pi \left[12y + \frac{8}{5}\sin(6y) + \frac{16}{5}\sin(3y) \right]$	Marker's	students missed the				
		Comment	$16\cos(3y)$ or changed the				
	$\begin{bmatrix} 4 & 16 & 3\pi \end{bmatrix}$		$16\cos^2(3y)$ incorrectly.				
	$=\pi \left[6\pi + \frac{4}{3}\sin 3\pi + \frac{16}{3}\sin \frac{3\pi}{2} - 0 \right]$						
	$(18\pi - 16)$ 2						
	$=\pi\left(\frac{18\pi-16}{3}\right)$ units ³						
b)	A particle, A , is projected from the origin with an initial velocit	ty of $16i + 30$	$i \text{ ms}^{-1}$				
	At the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time, particle B is projected towards the origin from the same time B is projected towards the origin from the same time B is projected towards the origin from the same time B is projected towards the origin from the same time B is projected towards the origin from the same time B is projected towards the origin from the same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards to be a same time B is projected towards towards towards to be a same time B is projected towards t		~				
	origin and 25 m above the origin with an initial velocity of $-8i$	$\frac{1}{2}$ + 20 $\frac{1}{2}$ ms .					
	Let the acceleration due to gravity be 9.8 ms^{-2} .	A() 160	$(20, 40^2)$				
	The position vector of particle A at time t seconds is given by		$+(30t-4.9t)_{\sim}^{j}$				
i)	Find the position vector of particle B (i.e. $B(t)$) at time t see	conds.					
	Solution:	Marks	Guideline				
	For particle B	3	Correct solution				
	$\ddot{y} = -g \qquad \qquad \ddot{x} = 0$		One correct component				
	$\dot{y} = -gt + 20 \qquad \qquad \dot{x} = -8$	2	and progress towards the				
	$y = -\frac{g}{2}t^2 + 20t + 25 \qquad x = -8t + 60$	1	other component. One correct component.				
	2	1	Well done, although some				
	$\therefore B(t) = (-8t + 60)i + (25 + 20t - 4.9t^{2})j$	Marker's	students had $x = -8t$ and				
		Comment	$y = -\frac{g}{2}t^2 + 20t$				
			$y = 2^{i} + 20i$				

ii)	Find the time and point at which the two particles collide.		
	Solution:	Marks	Guideline
	The particles collide when $A(t) = B(t)$	3	Correct solution
	$\therefore 16t_{i} + (30t - 4.9t^{2})_{i} = (-8t + 60)_{i} + (25 + 20t - 4.9t^{2})_{i}$		Finds the time at which the
	Comparing <i>i</i> components: $-8t + 60 = 16t \implies t = 2.5$	2	two particles collide or
	~		equivalent merit. Recognises we need to
	$A(2.5) = 16 \times 2.5 i + (30 \times 2.5 - 4.9(2.5)^2) j$	1	make $A(t) = B(t)$.
	40: 355	Marker's	Well done
	$=40\underline{i}+\frac{355}{8}\underline{j}$	Comment	
	The particles collide after $2.5~{ m s}$ at a point $40~{ m m}$ to the right		
	and 44.375 m above the origin		
c)	In the figure $\angle ABC = 90^\circ$, $PA = 2 \times BP$, $AM = 2 \times MC$.		
	Î.		
	Let $\overrightarrow{BA} = v$ and $\overrightarrow{BC} = u$.		
i)	\overline{BM} and \overline{CP} in terms of \underline{y} and \underline{y} .		
	Solution:	Marks	Guideline
	Now $CA = BA - BC = v - u$	3	Correct solution
	$\therefore \overrightarrow{CM} = \frac{1}{3} (y - y)$ and $\therefore \overrightarrow{BP} = \frac{1}{3} y$	2	Finds either BM or CP.
	5	1	Finds CM or BP.
	$\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{CM} \qquad \qquad \overrightarrow{CP} = \overrightarrow{CB} + \overrightarrow{BP}$		Many, many students had
	$= \underbrace{u}_{x} + \frac{1}{3} \underbrace{(v - u)}_{z} = -\underbrace{u}_{x} + \frac{1}{3} \underbrace{v}_{z}$		the vectors in the wrong direction e.g.,
		Marker's	-
	$=\frac{2}{3}u+\frac{1}{3}v$	Comment	$\overrightarrow{CP} = \overrightarrow{BC} + \overrightarrow{BP} = \cancel{u} + \frac{\cancel{v}}{3}$
	3 ~ 3 ~		Some had $\frac{1}{2}$ instead of $\frac{1}{3}$
ii)	ii) If $BM \perp CP$, find $\frac{ BA }{ BC }$		
	Solution:	Marks	Guideline
	Now $\overrightarrow{BM} \cdot \overrightarrow{CP} = 0 \implies \left(\frac{2}{3}\cancel{u} + \frac{1}{3}\cancel{v}\right) \cdot \left(-\cancel{u} + \frac{1}{3}\cancel{v}\right) = 0$	3	For correct answer
			Uses $u.v = 0$ to simplify
	$\therefore -\frac{2}{3}(\underline{u}\cdot\underline{u}) + \frac{2}{9}(\underline{u}\cdot\underline{v}) - \frac{1}{3}(\underline{v}\cdot\underline{u}) + \frac{1}{9}(\underline{v}\cdot\underline{v}) = 0$	2	equation or equivalent
		1	merit. Uses $BM.CP = 0.$
	$\therefore \frac{1}{9} (\underline{y} \cdot \underline{y}) - \frac{2}{3} (\underline{u} \cdot \underline{u}) = 0 \text{ as } (\underline{u} \cdot \underline{y} = 0)$	1	Generally well done,
	$9^{(2-2)}$ $3^{(2-2)}$ $3^{(2-2)}$	Marker's	although there were some
	$\therefore \frac{\underline{v} \cdot \underline{v}}{\underline{v}} = 6$	Comment	issues with expanding the
	$\underline{u} \cdot \underline{u}$		dot product.
	$ y ^2 = BA y = \Gamma_{\overline{c}}$		
	$\therefore \frac{ \underline{y} ^2}{ \underline{u} ^2} = 6 \implies \frac{ BA }{ BC } = \frac{ \underline{y} }{ \underline{u} } = \sqrt{6}$		